Exploration of Novel Lichen Compounds as Inhibitors of SARS-CoV-2 Mpro: Ligand-Based Design, Molecular Dynamics, and ADMET Analyses.
Amit GuptaNiharika SahuAshish P SinghVinay Kumar SinghSuresh C SinghVijay J UpadhyeAlen T MathewRajnish KumarRajeshwar P SinhaPublished in: Applied biochemistry and biotechnology (2022)
In the year 2019-2020, the whole world witnessed the spread of a disease called COVID-19 caused by SARS-CoV-2. A number of effective drugs and vaccine has been formulated to combat this outbreak. For the development of anti-COVID-19 drugs, the main protease (Mpro) is considered a key target as it has rare mutations and plays a crucial role in the replication of the SARS CoV-2. In this study, a library of selected lichen compounds was prepared and used for virtual screening against SARS-CoV-2 Mpro using molecular docking, and several hits as potential inhibitors were identified. Remdesivir was used as a standard inhibitor of Mpro for its comparison with the identified hits. Twenty-six compounds were identified as potential hits against Mpro, and these were subjected to in silico ADMET property prediction, and the compounds having favorable properties were selected for further analysis. After manual inspection of their interaction with the binding pocket of Mpro and binding affinity score, four compounds, namely, variolaric acid, cryptostictinolide, gyrophoric acid, and usnic acid, were selected for molecular dynamics study to evaluate the stability of complex. The molecular dynamics results indicated that except cryptostictinolide, all the three compounds made a stable complex with Mpro throughout a 100-ns simulation time period. Among all, usnic acid seems to be more stable and effective against SARS-CoV-2 Mpro. In summary, our findings suggest that usnic acid, variolaric acid, and gyrophoric acid have potential to inhibit SARS-Cov-2 Mpro and act as a lead compounds for the development of antiviral drug candidates against SARS-CoV-2.