Login / Signup

Peracetic acid reduces Campylobacter spp. on turkey skin: Effects of a spray treatment on microbial load, sensory and meat quality during storage.

Rilana BertramCorinna KehrenbergDiana SeinigeCarsten Krischek
Published in: PloS one (2019)
Handling and consumption of Campylobacter-contaminated poultry meat is the most common cause of human campylobacteriosis. While many studies deal with interventions to reduce Campylobacter spp. on chicken carcasses, studies on other poultry species are rare. In the present study, a spray treatment with peracetic acid (PAA) on turkey carcasses was evaluated. For this, parts of breast fillets with skin and Campylobacter (C.) jejuni DSM 4688 (108 cfu/ml) inoculated drumsticks were sprayed for 30 s with PAA (1200 ppm) or water as control solution. Samples were packaged under modified atmosphere and stored at 4°C until analysis on day 1, 6 and 12. The breast fillets were used for determination of the total viable count, sensory and meat quality examination as well as myoglobin content and biogenic amines. The drumsticks were used for C. jejuni counts. PAA had a significant effect in reducing total viable counts on all days by up to 1.2 log10 compared to the untreated control. Treatment with water alone showed no effect. C. jejuni counts were significantly reduced by PAA (0.9-1.3 log10), while water achieved a 0.5 log10 reduction on C. jejuni counts on day 1. No differences in sensory, pH, electrical conductivity and myoglobin content could be found. The skin of the PAA treated fillets had lower redness values than the water control on day 1, whereas on day 12 parts of the water treated muscles were lighter than the untreated control. A lower putrescine content of the water sprayed fillets in comparison to the control sample on day 12 was the only significant difference concerning the biogenic amines. Results from this study indicate that a spray treatment with 1200 ppm PAA would be a useful measure to lower the Campylobacter spp. counts on turkey carcasses without having a negative influence on product quality.
Keyphrases
  • antimicrobial resistance
  • peripheral blood
  • biofilm formation
  • escherichia coli
  • risk assessment
  • replacement therapy
  • soft tissue
  • wound healing
  • microbial community
  • heavy metals
  • drinking water
  • room temperature