Login / Signup

Hydrogen-Rich Cation Radicals of DNA Dinucleotides: Generation and Structure Elucidation by UV-Vis Action Spectroscopy.

Yang LiuJoseph A KornAndy DangFrantišek Tureček
Published in: The journal of physical chemistry. B (2018)
Hydrogen-rich DNA dinucleotide cation radicals (dGG + 2H)+•, (dCG + 2H)+•, and (dGC + 2H)+• represent transient species comprising protonated and hydrogen atom adducted nucleobase rings that serve as models for proton and radical migrations in ionized DNA. These DNA cation radicals were generated in the gas phase by electron-transfer dissociation of dinucleotide dication-crown-ether complexes and characterized by UV-vis photodissociation action spectra, ab initio calculations of structures and relative energies, and time-dependent density functional theory calculations of UV-vis absorption spectra. Theoretical calculations indicate that (dGG + 2H)+• cation radicals formed by electron transfer underwent an exothermic conformational collapse that was accompanied by guanine ring stacking and facile internucleobase hydrogen atom transfer, forming 3'-guanine C-8-H radicals. In contrast, exothermic hydrogen transfer from the 5'-cytosine radical onto the guanine ring in (dCG + 2H)+• was kinetically hampered, resulting in the formation of a mixture of 5'-cytosine and 3'-guanine radicals. Conformational folding and nucleobase stacking were energetically unfavorable in (dGC + 2H)+• that retained its structure of a 3'-cytosine radical, as formed by one-electron reduction of the dication. Hydrogen-rich guanine (G + H)• and cytosine (C + H)• radicals were calculated to have vastly different basicities in water, as illustrated by the respective p Ka values of 20.0 and 4.6, which is pertinent to their different abilities to undergo proton-transfer reactions in solution.
Keyphrases