Affinin, Isolated from Heliopsis longipes, Induces an Antihypertensive Effect That Involves CB1 Cannabinoid Receptors and TRPA1 and TRPV1 Channel Activation.
Beatriz A Luz-MartínezDailenys Marrero-MorfaFrancisco J Luna-VázquezAlejandra Rojas-MolinaCésar Ibarra-AlvaradoPublished in: Planta medica (2024)
In previous studies, we demonstrated that the ethanolic extract of Heliopsis longipes roots and its main alkamide, affinin, elicit a vasorelaxant effect through a mechanism involving activation of the gasotransmitter pathways and stimulation of cannabinoid type 1 receptors and transient receptor potential ankyrin 1 and transient receptor potential vanilloid 1 channels. However, it has not yet been demonstrated whether the EEH and affinin are capable of lowering high blood pressure. Therefore, the aim of the present study was to determine the effect of the oral administration of the EEH and affinin on the systolic blood pressure of N G -nitro-L-arginine methyl ester-induced hypertensive rats and to explore the participation of cannabinoid receptors and transient receptor potential channels in the mechanism of action of this alkamide. Our results showed that the ethanolic extract of H. longipes and affinin significantly lowered systolic blood pressure and induced an improvement in endothelial function, which is associated with increased serum nitric oxide levels. Inhibition of cannabinoid type 1 receptors by rimonabant (3 mg/kg), transient receptor potential ankyrin 1 channels by HC-030031 (8 mg/kg), and transient receptor potential vanilloid 1 channels by capsazepine (5 mg/kg) significantly decreased the antihypertensive effect induced by affinin, suggesting that the blood pressure-lowering effect of this alkamide involves activation of cannabinoid type 1 receptors and transient receptor potential ankyrin 1 and transient receptor potential vanilloid 1 channels.
Keyphrases
- blood pressure
- nitric oxide
- hypertensive patients
- cerebral ischemia
- heart rate
- human health
- heart failure
- risk assessment
- oxidative stress
- type diabetes
- binding protein
- spinal cord
- spinal cord injury
- anti inflammatory
- metabolic syndrome
- endothelial cells
- hydrogen peroxide
- subarachnoid hemorrhage
- atrial fibrillation
- blood brain barrier
- case control