Computational design of high efficiency nonplanar tri-s-triazine-based ambipolar host materials for phosphorescent blue emitters.
Zhaomin NieZhirui MaiYiming PengKaiping ChenYiyun ZhangWenxu ZhengPublished in: Physical chemistry chemical physics : PCCP (2018)
A series of nonplanar tri-s-triazine-based molecules were designed, and their optical, electronic, and charge transport properties as ambipolar host materials for blue electrophosphorescence emitters were explored by density functional theory. The influence of the linkage between tri-s-triazine and carbazole, diphenylamine and triphenylamine, as well as the influence of a series of electron-donating and electron-withdrawing substituents on triplet energy, energy level matching and charge transport of the designed molecules was discussed in detail. Our results reveal that the molecules under investigation can serve as host materials for blue electrophosphorescence emitters. We also predicted the mobility of designed molecules with better performance in the P1[combining macron] space group. Based on the investigated results, we proposed a rational way for the design of host materials for OLEDs, and also expanded the application field of tri-s-triazine.