Login / Signup

Generation and Detection of Strain-Localized Excitons in WS 2 Monolayer by Plasmonic Metal Nanocrystals.

Shasha LiKa Kit ChuiFuhuan ShenHe HuangShizheng WenChi-Yung YamLei ShaoJian-Bin XuJianfang Wang
Published in: ACS nano (2022)
Excitons in a transition-metal dichalcogenide (TMDC) monolayer can be modulated through strain with spatial and spectral control, which offers opportunities for constructing quantum emitters for applications in on-chip quantum communication and information processing. Strain-localized excitons in TMDC monolayers have so far mainly been observed under cryogenic conditions because of their subwavelength emission area, low quantum yield, and thermal-fluctuation-induced delocalization. Herein, we demonstrate both generation and detection of strain-localized excitons in WS 2 monolayer through a simple plasmonic structure design, where WS 2 monolayer covers individual Au nanodisks or nanorods. Enhanced emission from the strain-localized excitons of the deformed WS 2 monolayer near the plasmonic hotspots is observed at room temperature with a photoluminescence energy redshift up to 200 meV. The emission intensity and peak energy of the strain-localized excitons can be adjusted by the nanodisk size. Furthermore, the excitation and emission polarization of the strain-localized excitons are modulated by anisotropic Au nanorods. Our results provide a promising strategy for constructing nonclassical integrated light sources, high-sensitivity strain sensors, or tunable nanolasers for future dense nanophotonic integrated circuits.
Keyphrases
  • energy transfer
  • room temperature
  • healthcare
  • label free
  • molecular dynamics
  • single molecule
  • gold nanoparticles
  • health information
  • current status