Login / Signup

Design and directed evolution of noncanonical β-stereoselective metalloglycosidases.

Woo Jae JeongWoon Ju Song
Published in: Nature communications (2022)
Metallohydrolases are ubiquitous in nearly all subclasses of hydrolases, utilizing metal elements to activate a water molecule and facilitate its subsequent dissociation of diverse chemical bonds. However, such a catalytic role of metal ions is rarely found with glycosidases that hydrolyze the glycosidic bonds in sugars. Herein, we design metalloglycosidases by constructing a hydrolytically active Zn-binding site within a barrel-shaped outer membrane protein OmpF. Structure- and mechanism-based redesign and directed evolution have led to the emergence of Zn-dependent glycosidases with catalytic proficiency of 2.8 × 10 9 and high β-stereoselectivity. Biochemical characterizations suggest that the Zn-binding site constitutes a key catalytic motif along with at least one adjacent acidic residue. This work demonstrates that unprecedented metalloenzymes can be tailor-made, expanding the scope of inorganic reactivities in proteinaceous environments, resetting the structural and functional diversity of metalloenzymes, and providing the potential molecular basis of unidentified metallohydrolases and novel whole-cell biocatalysts.
Keyphrases
  • heavy metals
  • crystal structure
  • cell therapy
  • risk assessment
  • water soluble
  • quantum dots
  • ionic liquid
  • stem cells
  • amino acid
  • transition metal
  • aqueous solution