Development of Biomarkers Potentially Sensitive to Early Psychosis Using Mismatch Negativity (MMN) to Complex Pattern Deviations.
Dean F SalisburyFran López CaballeroBrian A CoffmanPublished in: Clinical EEG and neuroscience (2024)
Infrequent stimulus deviations from repetitive sequences elicit mismatch negativity (MMN) even passively, making MMN practical for clinical applications. Auditory MMN is typically elicited by a change in one (or more) physical stimulus parameters (eg, pitch, duration). This lower-order simple MMN (sMMN) is impaired in long-term schizophrenia. However, sMMN contains activity from release from stimulus adaptation, clouding its face validity as purely deviance-related. More importantly, it is unreliably reduced in samples of first-episode psychosis, limiting its utility as a biomarker. Complex pattern-deviant MMN (cMMN) tasks, which elicit early and late responses, are based on higher-order abstractions and better isolate deviance detection. Their abstract nature may increase the sensitivity to processing deficits in early psychosis. However, both the early and late cMMNs are small, limiting separation between healthy and psychotic samples. In 29 healthy individuals, we tested a new dual-rule cMMN paradigm to assess additivity of deviance. Sounds alternated lateralization between left and right, and low and high pitches, creating a left-low, right-high alternating pattern. Deviants were a repeated left-low, violating lateralization and pitch patterns. Early and late cMMNs on the dual-rule task were significantly larger than those on the one-rule extra tone cMMN task ( P < .05). Further, the dual-rule early cMMN was not significantly smaller than pitch or duration sMMNs ( P > .48, .28, respectively). These results demonstrate additivity for cMMN pattern-violating rules. This increase in cMMN amplitude should increase group difference effect size, making it a prime candidate for a biomarker of disease presence at first psychotic episode, and perhaps even prior to the emergence of psychosis.