Login / Signup

Predicting disease severity in multiple sclerosis using multimodal data and machine learning.

Magi AndorraAna FreireIrati ZubizarretaNicole Kerlero de RosboSteffan D BosMelanie RinasEinar A HøgestølSigrid A de Rodez BenaventTone BergeSynne Brune-IngebretseFederico IvaldiMaria CellerinoMatteo PardiniGemma VilaIrene Pulido-ValdeolivasElena H Martinez-LapiscinaSara LlufriuAlbert SaizYolanda BlancoEloy Martinez-HerasElisabeth SolanaPriscilla Bäcker-KoduahJanina BehrensJoseph KuchlingSusanna AsseyerMichael ScheelClaudia ChienHanna ZimmermannSeyedamirhosein MotamediJosef Kauer-BoninAlex BrandtJulio Saez-RodriguezLeonidas G AlexopoulosFriedemann PaulHanne F HarboHengameh ShamsJorge OksenbergAntonio UccelliRicardo Baeza-YatesPablo Villoslada
Published in: Journal of neurology (2023)
Combining clinical, imaging and omics data with machine learning helps identify MS patients at risk of disability worsening.
Keyphrases
  • multiple sclerosis
  • machine learning
  • big data
  • electronic health record
  • artificial intelligence
  • high resolution
  • white matter
  • single cell
  • ms ms
  • chronic pain