Liquid-Liquid Phase Transition in Metallic Droplets.
Zhichao LiTao LiErli NiJian HuangDi ZhangJunping QianHui LiPublished in: The journal of physical chemistry. A (2022)
We report theoretical evidence of the substrate-induced liquid-liquid phase transition (LLPT) behaviors in a single Al droplet and Ti-Al droplets. The Al droplet can produce an LLPT induced by substrates in part, forming a special three-layer structure. However, the introduction of a Ti droplet can promote the LLPT in an Al droplet. Al and Ti droplets do not coalesce into a homogeneously mixed droplet but produce the ordered liquid films. The substrate-induced LLPT in the Al droplet is characterized by the transition from the disordered to ordered structure. Results indicate that the substrate and the Ti droplet are the driving forces to promote the LLPT. The LLPT of the Ti-Al droplets in the wedge-shaped substrate is also observed, indicating that the confined Ti-Al droplets are more likely to undergo an LLPT.