Login / Signup

Wafer-scale reliable switching memory based on 2-dimensional layered organic-inorganic halide perovskite.

Ja-Young SeoJaeho ChoiHui-Seon KimJaegyeom KimJune-Mo YangCan CuhadarJi Su HanSeung-Joo KimDonghwa LeeHo Won JangNam Gyu Park
Published in: Nanoscale (2018)
Recently, organic-inorganic halide perovskite (OHP) has been suggested as an alternative to oxides or chalcogenides in resistive switching memory devices due to low operating voltage, high ON/OFF ratio, and flexibility. The most studied OHP is 3-dimensional (3D) MAPbI3. However, MAPbI3 often exhibits less reliable switching behavior probably due to the uncontrollable random formation of conducting filaments. Here, we report the resistive switching property of 2-dimensional (2D) OHP and compare switching characteristics depending on structural dimensionality. The dimensionality is controlled by changing the composition of BA2MAn-1PbnI3n+1 (BA = butylammonium, MA = methylammonium), where 2D is formed from n = 1, and 3D is formed from n = ∞. Quasi 2D compositions with n = 2 and 3 are also compared. Transition from a high resistance state (HRS) to a low resistance state (LRS) occurs at 0.25 × 106 V m-1 for 2D BA2PbI4 film, which is lower than those for quasi 2D and 3D. Upon reducing the dimensionality from 3D to 2D, the ON/OFF ratio significantly increases from 102 to 107, which is mainly due to the decreased HRS current. A higher Schottky barrier and thermal activation energy are responsible for the low HRS current. We demonstrate for the first time reliable resistive switching from 4 inch wafer-scale BA2PbI4 thin film working at both room temperature and a high temperature of 87 °C, which strongly suggests that 2D OHP is a promising candidate for resistive switching memory.
Keyphrases
  • room temperature
  • perovskite solar cells
  • working memory
  • high efficiency