Login / Signup

Electronic Structure of Tetrahedral, S = 2, [Fe{(EPiPr2)2N}2], E = S, Se, Complexes: Investigation by High-Frequency and -Field Electron Paramagnetic Resonance, 57Fe Mössbauer Spectroscopy, and Quantum Chemical Studies.

Sebastian A StoianMahsa MoshariEleftherios FerentinosAlexios GrigoropoulosJurek KrzystekJoshua TelserPanayotis Kyritsis
Published in: Inorganic chemistry (2021)
In this work, we assessed the electronic structures of two pseudotetrahedral complexes of FeII, [Fe{(SPiPr2)2N}2] (1) and [Fe{(SePiPr2)2N}2] (2), using high-frequency and -field EPR (HFEPR) and field-dependent 57Fe Mössbauer spectroscopies. This investigation revealed S = 2 ground states characterized by moderate, negative zero-field splitting (zfs) parameters D. The crystal-field (CF) theory analysis of the spin Hamiltonian (sH) and hyperfine structure parameters revealed that the orbital ground states of 1 and 2 have a predominant dx2-y2 character, which is admixed with dz2 (∼10%). Although replacing the S-containing ligands of 1 by their Se-containing analogues in 2 leads to a smaller |D| value, our theoretical analysis, which relied on extensive ab initio CASSCF calculations, suggests that the ligand spin-orbit coupling (SOC) plays a marginal role in determining the magnetic anisotropy of these compounds. Instead, the dx2-y2β → dxyβ excitations yield a large negative contribution, which dominates the zfs of both 1 and 2, while the different energies of the dx2-y2β → dxzβ transitions are the predominant factor responsible for the difference in zfs between 1 and 2. The electronic structures of these compounds are contrasted with those of other [FeS4] sites, including reduced rubredoxin by considering a D2-type distortion of the [Fe(E-X)4] cores, where E = S, Se; X = C, P. Our combined CASSCF/DFT calculations indicate that while the character of the orbital ground state and the quintet excited states' contribution to the zfs of 1 and 2 are modulated by the magnitude of the D2 distortion, this structural change does not impact the contribution of the excited triplet states.
Keyphrases