First Genomic Evidence of California Hare Coltivirus from Natural Populations of Ixodes persulcatus Ticks in Northeast China.
Zhen-Yu HuJing-Tao ZhangYantao LiuLiming LiuFang TangGuangqian SiMeiqi ZhangShuang LiYun-Fa ZhangCong PengLei ZhangXiaofang MaXiao-Ai ZhangWei LiuPublished in: Pathogens (Basel, Switzerland) (2024)
Background: California hare coltivirus (CHCV) was isolated in California in 1976 from a hare. Despite its long history, it remained unclear whether CHCV was exclusively distributed in California with limited host ranges. Main body: By next-generation sequencing (NGS), we obtained a complete sequence of CHCV from Ixodes persulcatus collected in 2019 in northeast China. An expanded epidemiological investigation was subsequently performed on ticks belonging to four species ( Ix. persulcatus , Haemaphysalis concinna , Devmacentor silvarum , Haemaphysalis longicornis ) collected in northeastern China by applying CHCV-specific RT-PCR and sequencing. CHCV RNA-positive results were found in 1.56% of the tick samples. Positive ticks were obtained in three of four sampled locations, with the highest rate observed in Inner Mongolia (2.69%), followed by Heilongjiang (1.94%) and Jilin provinces (0.55%). All positive results were derived from Ix. persulcatus ticks (2.33%), while no positive detection was found in the other tick species, even at the same location. Sequence analysis revealed that the current CHCV showed a high genetic identity (>80% amino acid identity) with the previously reported CHCV in all segments except segment seven (64.59% amino acid identity). Phylogenetic analysis based on RNA-dependent RNA polymerase (RdRp) amino acid sequences demonstrated that both the current and previously reported CHCV strains were grouped phylogenetically into the genus Coltivirus . Both CHCV strains formed a distinct clade, clustering with three human pathogenic coltiviruses (Colorado tick fever virus, Salmon River virus, and Eyach virus), and were distant from the other coltiviruses. Conclusions: We report the identification and characterization of CHCV for the first time in Ix. persulcatus ticks, expanding the currently known geographic scope, host, and genetic heterogeneity in CHCV.