Aggregation-induced emissive nanoarchitectures for luminescent solar concentrators.
Elisavet TatsiAndrea NittiDario PasiniGianmarco GriffiniPublished in: Nanoscale (2024)
Aggregation-induced emission (AIE), the phenomenon by which selected luminophores undergo the enhancement of emission intensity upon aggregation, has demonstrated potential in materials and biomaterials science, and in particular in those branches for which spectral management in the solid state is of fundamental importance. Its development in the area of luminescent spectral conversion devices like luminescent solar concentrators (LSCs) is instead still in its infancy. This account aims at summarizing relevant contributions made in this field so far, with a special emphasis on the design of molecular and macromolecular architectures capable of extending their spectral breadth to the deep-red (DR) and the near-infrared (NIR) wavelengths. Because of the many prospective advantages characterizing these spectral regions in terms of photon flux density and human-eye perception, it is anticipated that further development in the design, synthesis and engineering of advanced molecular and macromolecular DR/NIR-active AIE luminophores will enable faster and easier integration of LSCs into the built environment as highly transparent, active elements for unobtrusive light-to-electricity conversion.
Keyphrases
- solid state
- optical coherence tomography
- fluorescent probe
- quantum dots
- living cells
- sensitive detection
- dual energy
- endothelial cells
- photodynamic therapy
- metal organic framework
- light emitting
- public health
- drug release
- single molecule
- energy transfer
- fluorescence imaging
- editorial comment
- computed tomography
- high intensity
- drug delivery
- physical activity
- weight loss