The physical properties of graphene nanoribbons (GNRs) are closely related to their morphology; meanwhile GNRs can easily slide on surfaces (e.g., superlubricity), which may largely affect the configuration and hence the properties. However, the morphological evolution of GNRs during sliding remain elusive. We explore the intriguing tail swing behavior of GNRs under various sliding configurations on Au substrate. Two distinct modes of tail swing emerge, characterized by regular and irregular swings, depending on the GNR width and initial position relative to the substrate. The mechanism can be explained by the moiré effect, presenting both symmetric and asymmetric patterns, resembling a mesmerizing nanomillipede. We reveal a compelling correlation between the tail swing mode and the edge wrinkle patterns of GNRs induced by the moiré effect. These findings provide fundamental understanding of how edge effects influence the tribomorphological responses of GNRs, offering valuable insights for precise manipulation and operation of GNRs.