Login / Signup

Single-Cell RNA Sequencing Technology Landscape in 2023.

Hui-Qi QuCharlly KaoHakon Hakonarson
Published in: Stem cells (Dayton, Ohio) (2023)
Single-cell RNA sequencing (scRNA-seq) has revolutionized our understanding of cellular heterogeneity and the dynamics of gene expression, bearing profound significance in stem cell research. Depending on the starting materials used for analysis, scRNA-seq encompasses scRNA-seq and single-nucleus RNA sequencing (snRNA-seq). scRNA-seq excels in capturing cellular heterogeneity and characterizing rare cell populations within complex tissues, while snRNA-seq is advantageous in situations where intact cell dissociation is challenging or undesirable (eg, epigenomic studies). A number of scRNA-seq technologies have been developed as of late, including but not limited to droplet-based, plate-based, hydrogel-based, and spatial transcriptomics. The number of cells, sequencing depth, and sequencing length in scRNA-seq can vary across different studies. Addressing current technical challenges will drive the future of scRNA-seq, leading to more comprehensive and precise insights into cellular biology and disease mechanisms informing therapeutic interventions.
Keyphrases