Login / Signup

Substrate Recognition of Glycoprotein Folding Sensor UGGT Analyzed by Site-Specifically 15N-Labeled Glycopeptide and Small Glycopeptide Library Prepared by Parallel Native Chemical Ligation.

Masayuki IzumiRie KurumaRyo OkamotoAkira SekoYukishige ItoYasuhiro Kajihara
Published in: Journal of the American Chemical Society (2017)
UDP-glucose:glycoprotein glucosyltransferase (UGGT) distinguishes glycoproteins in non-native conformations from those in native conformations and glucosylates from only non-native glycoproteins. To analyze how UGGT recognizes non-native glycoproteins, we chemically synthesized site-specifically 15N-labeled interleukin 8 (IL-8) C-terminal (34-72) glycopeptides bearing a Man9GlcNAc2 (M9) oligosaccharide. Chemical shift perturbation mapping NMR experiments suggested that Phe65 of the glycopeptide specifically interacts with UGGT. To analyze this interaction, we constructed a glycopeptide library by varying Phe65 with 10 other natural amino acids, via parallel native chemical ligation between a glycopeptide-α-thioester and a peptide library consisting of 11 peptides. UGGT assay against the glycopeptide library revealed that, although less hydrophobic glycopeptides could be used as substrates for UGGT, hydrophobic glycopeptides are preferred.
Keyphrases
  • amino acid
  • high resolution
  • type diabetes
  • high throughput
  • metabolic syndrome
  • single cell
  • adipose tissue
  • computed tomography
  • insulin resistance
  • aqueous solution