Login / Signup

Recovery of dynamical similarity from lossy representations of collective behavior of midge swarms.

Eighdi AungNicole AbaidBenjamin Jantzen
Published in: Chaos (Woodbury, N.Y.) (2023)
Understanding emergent collective phenomena in biological systems is a complex challenge due to the high dimensionality of state variables and the inability to directly probe agent-based interaction rules. Therefore, if one wants to model a system for which the underpinnings of the collective process are unknown, common approaches such as using mathematical models to validate experimental data may be misguided. Even more so, if one lacks the ability to experimentally measure all the salient state variables that drive the collective phenomena, a modeling approach may not correctly capture the behavior. This problem motivates the need for model-free methods to characterize or classify observed behavior to glean biological insights for meaningful models. Furthermore, such methods must be robust to low dimensional or lossy data, which are often the only feasible measurements for large collectives. In this paper, we show that a model-free and unsupervised clustering of high dimensional swarming behavior in midges (Chironomus riparius), based on dynamical similarity, can be performed using only two-dimensional video data where the animals are not individually tracked. Moreover, the results of the classification are physically meaningful. This work demonstrates that low dimensional video data of collective motion experiments can be equivalently characterized, which has the potential for wide applications to data describing animal group motion acquired in both the laboratory and the field.
Keyphrases
  • electronic health record
  • big data
  • machine learning
  • single cell
  • data analysis
  • climate change
  • quantum dots
  • artificial intelligence