Raman Spectral Signatures of Serum-Derived Extracellular Vesicle-Enriched Isolates May Support the Diagnosis of CNS Tumors.
Matyas BukvaGabriella DobraJuan Gomez-PerezKrisztian KoosMaria HarmatiEdina Gyukity-SebestyenTamas BiroAdrienn JeneiSandor KormondiPeter HorvathZoltán KónyaAlmos KleknerKrisztina BuzasPublished in: Cancers (2021)
Investigating the molecular composition of small extracellular vesicles (sEVs) for tumor diagnostic purposes is becoming increasingly popular, especially for diseases for which diagnosis is challenging, such as central nervous system (CNS) malignancies. Thorough examination of the molecular content of sEVs by Raman spectroscopy is a promising but hitherto barely explored approach for these tumor types. We attempt to reveal the potential role of serum-derived sEVs in diagnosing CNS tumors through Raman spectroscopic analyses using a relevant number of clinical samples. A total of 138 serum samples were obtained from four patient groups (glioblastoma multiforme, non-small-cell lung cancer brain metastasis, meningioma and lumbar disc herniation as control). After isolation, characterization and Raman spectroscopic assessment of sEVs, the Principal Component Analysis-Support Vector Machine (PCA-SVM) algorithm was performed on the Raman spectra for pairwise classifications. Classification accuracy (CA), sensitivity, specificity and the Area Under the Curve (AUC) value derived from Receiver Operating Characteristic (ROC) analyses were used to evaluate the performance of classification. The groups compared were distinguishable with 82.9-92.5% CA, 80-95% sensitivity and 80-90% specificity. AUC scores in the range of 0.82-0.9 suggest excellent and outstanding classification performance. Our results support that Raman spectroscopic analysis of sEV-enriched isolates from serum is a promising method that could be further developed in order to be applicable in the diagnosis of CNS tumors.
Keyphrases
- raman spectroscopy
- deep learning
- machine learning
- molecular docking
- blood brain barrier
- label free
- minimally invasive
- genome wide
- computed tomography
- white matter
- optical coherence tomography
- single cell
- molecular dynamics simulations
- multiple sclerosis
- climate change
- risk assessment
- human health
- density functional theory