Login / Signup

Is Recognition of Speech in Noise Related to Memory Disruption Caused by Irrelevant Sound?

Daniel OberfeldKatharina StaabFlorian KattnerWolfgang Ellermeier
Published in: Trends in hearing (2024)
Listeners with normal audiometric thresholds show substantial variability in their ability to understand speech in noise (SiN). These individual differences have been reported to be associated with a range of auditory and cognitive abilities. The present study addresses the association between SiN processing and the individual susceptibility of short-term memory to auditory distraction (i.e., the irrelevant sound effect [ISE]). In a sample of 67 young adult participants with normal audiometric thresholds, we measured speech recognition performance in a spatial listening task with two interfering talkers (speech-in-speech identification), audiometric thresholds, binaural sensitivity to the temporal fine structure (interaural phase differences [IPD]), serial memory with and without interfering talkers, and self-reported noise sensitivity. Speech-in-speech processing was not significantly associated with the ISE. The most important predictors of high speech-in-speech recognition performance were a large short-term memory span, low IPD thresholds, bilaterally symmetrical audiometric thresholds, and low individual noise sensitivity. Surprisingly, the susceptibility of short-term memory to irrelevant sound accounted for a substantially smaller amount of variance in speech-in-speech processing than the nondisrupted short-term memory capacity. The data confirm the role of binaural sensitivity to the temporal fine structure, although its association to SiN recognition was weaker than in some previous studies. The inverse association between self-reported noise sensitivity and SiN processing deserves further investigation.
Keyphrases
  • hearing loss
  • working memory
  • air pollution
  • young adults
  • machine learning
  • electronic health record
  • big data
  • deep learning