Login / Signup

Phosphido-bis(borane) complexes of the alkaline earth metals.

Keith IzodJames M WatsonRoss W HarringtonWilliam Clegg
Published in: Dalton transactions (Cambridge, England : 2003) (2020)
The reaction between two equivalents of {(Me3Si)2CH}(Ph)PH(BH3) (1) and Bu2Mg, followed by two equivalents of BH3·SMe2, gives the corresponding phosphido-bis(borane) complex, which may be crystallised as two distinct chemical species: the complex [{(Me3Si)2CH}(Ph)P(BH3)2]2Mg(THF)4·THF (2a), and two different THF solvates (1 : 1 and 1 : 2) of the solvent-separated ion triples [{(Me3Si)2CH}(Ph)P(BH3)2]2[Mg(THF)6]·THF (2b) and [{(Me3Si)2CH}(Ph)P(BH3)2]2[Mg(THF)6]·2THF (2c). Similar reactions between two equivalents of 1 and either (4-tBuC6H4CH2)2Ca(THF)4 or [(Me3Si)2CH]2Sr(THF)2, followed by two equivalents of BH3·SMe2, give the heavier alkali metal complexes [{(Me3Si)2CH}(Ph)P(BH3)2]2M(THF)4 [M = Ca (3), Sr (4)]. Surprisingly, compounds 2a, 3 and 4 adopt almost identical structures in the solid state, which differ only in the geometrical arrangement of the phosphido-bis(borane) ligands and the hapticity of the borane groups.
Keyphrases
  • room temperature
  • ionic liquid
  • risk assessment
  • health risk