Login / Signup

Single-cell imaging of phosphorus uptake shows that key harmful algae rely on different phosphorus sources for growth.

Niels J SchoffelenWiebke MohrTimothy G FerdelmanSten LittmannJulia DuerschlagMikhail V ZubkovHelle PlougMarcel M M Kuypers
Published in: Scientific reports (2018)
Single-cell measurements of biochemical processes have advanced our understanding of cellular physiology in individual microbes and microbial populations. Due to methodological limitations, little is known about single-cell phosphorus (P) uptake and its importance for microbial growth within mixed field populations. Here, we developed a nanometer-scale secondary ion mass spectrometry (nanoSIMS)-based approach to quantify single-cell P uptake in combination with cellular CO2 and N2 fixation. Applying this approach during a harmful algal bloom (HAB), we found that the toxin-producer Nodularia almost exclusively used phosphate for growth at very low phosphate concentrations in the Baltic Sea. In contrast, the non-toxic Aphanizomenon acquired only 15% of its cellular P-demand from phosphate and ~85% from organic P. When phosphate concentrations were raised, Nodularia thrived indicating that this toxin-producer directly benefits from phosphate inputs. The phosphate availability in the Baltic Sea is projected to rise and therefore might foster more frequent and intense Nodularia blooms with a concomitant rise in the overall toxicity of HABs in the Baltic Sea. With a projected increase in HABs worldwide, the capability to use organic P may be a critical factor that not only determines the microbial community structure, but the overall harmfulness and associated costs of algal blooms.
Keyphrases