Recent advancements in cryo-electron microscopy (cryo-TEM) have enabled the determination of structures of macromolecular complexes at near-atomic resolution, establishing it as a pivotal tool in Structural Biology. This high resolution allows for the detection of ligands and substrates under physiological conditions. Enhancements in detectors and imaging devices, like phase plates, improve signal quality, facilitating the reconstruction of even smaller macromolecular complexes. The 100-kDa barrier has been surpassed, presenting new opportunities for pharmacological research and expanding the scope of crystallographic analyses in the pharmaceutical industry. Cryo-TEM produces vast data sets from minimal samples, and refined classification methods can identify different conformational states of macromolecular complexes, offering deeper insights into the functional characteristics of macromolecular systems. Additionally, cryo-TEM is paving the way for time-resolved microscopy, with rapid freezing techniques capturing snapshots of vital structural changes in biological complexes. Finally, in Structural Cell Biology, advanced cryo-TEM, through tomographic procedures, is revealing conformational changes related to the specific subcellular localization of macromolecular systems and their interactions within cells.
Keyphrases
- electron microscopy
- high resolution
- single molecule
- molecular dynamics
- mass spectrometry
- induced apoptosis
- machine learning
- loop mediated isothermal amplification
- high speed
- single cell
- deep learning
- electronic health record
- cell death
- artificial intelligence
- endoplasmic reticulum stress
- big data
- cell cycle arrest
- mesenchymal stem cells
- cell proliferation
- simultaneous determination