Insight into Nanoscale Network of Spray-Dried Polymeric Particles: Role of Polymer Molecular Conformation.
Feng WanFlemming Hofmann LarsenHeloísa Nunes BordalloCamilla FogedJukka RantanenMingshi YangPublished in: ACS applied materials & interfaces (2018)
Poly(lactic- co-glycolic acid) (PLGA) microparticles represent a promising formulation approach for providing steady pharmacokinetic/pharmacodynamic profiles of therapeutic drugs for a long period. Understanding and controlling the supramolecular structure of PLGA microparticles at a molecular level is a prerequisite for the rational design of well-controlled, reproducible sustained-release profiles. Herein, we reveal the role of PLGA molecular conformation in particle formation and drug release. The nanoscale network of PLGA microparticles spray-dried using the solvents with distinct polarities was investigated by using NMR and neutron scattering. By employing chemometric method, we further demonstrate the evolution of nanoscale networks in spray-dried PLGA microparticles upon water absorption. Our results indicate that PLGA molecules form more chain entanglements during spray drying when using the solvents with low polarity, where PLGA molecule adopts a more flexible, extended conformation, resulting in the network being more resistant to water absorption in spray-dried PLGA microparticles. This work underlines the role of PLGA molecular conformation in controlling formation and evolution of nanoscale network of spray-dried PLGA microparticles and will have important consequences in achieving customized drug release from the PLGA microparticles.