A Cascaded Phase-Transfer Microfluidic Chip with Magnetic Probe for High-Activity Sorting, Purification, Release, and Detection of Circulating Tumor Cells.
Miaoxiang NianBeibei ChenMan HeBin HuPublished in: Analytical chemistry (2023)
Microfluidic chips have emerged as a promising tool for sorting and enriching circulating tumor cells (CTCs) in blood, while the efficacy and purity of CTC sorting greatly depend on chip design. Herein, a novel cascaded phase-transfer microfluidic chip was developed for high-efficiency sorting, purification, release, and detection of MCF-7 cells (as a model CTC) in blood samples. MCF-7 cells were specifically captured by EpCAM aptamer-modified magnetic beads and then introduced into the designed cascaded phase-transfer microfluidic chip that consisted of three functional regions (sorting, purification, and release zone). In the sorting zone, the MCF-7 cells moved toward the inner wall of the channel and entered the purification zone for primary separation from white blood cells; in the purification zone, the MCF-7 cells were transferred to the phosphate-buffered saline flow under the interaction of Dean forces and central magnetic force, achieving high purification of MCF-7 cells from blood samples; in the release zone, MCF-7 cells were further transferred into the nuclease solution and fixed in groove by the strong magnetic force and hydrodynamic force, and the continuously flowing nuclease solution cleaved the aptamer on the trapped MCF-7 cells, causing gentle release of MCF-7 cells for subsequent inductively coupled plasma mass spectrometry (ICP-MS) detection or further cultivation. By measurement of the endogenous element Zn in the cells using ICP-MS for cell counting, an average cell recovery of 84% for MCF-7 cells was obtained in spiked blood samples. The developed method was applied in the analysis of real blood samples from healthy people and breast cancer patients, and CTCs were successfully detected in all tested patient samples (16/16). Additionally, the removal of the magnetic probes on the cell surface significantly improved cell viability up to 99.3%. Therefore, the developed cascaded phase-transfer microfluidic chip ICP-MS system possessed high integration for CTCs analysis with high cell viability, cell recovery, and purity, showing great advantages in early clinical cancer diagnosis.
Keyphrases
- circulating tumor cells
- induced apoptosis
- cell cycle arrest
- mass spectrometry
- endoplasmic reticulum stress
- high throughput
- breast cancer cells
- single cell
- cell death
- oxidative stress
- stem cells
- ms ms
- cell proliferation
- circulating tumor
- small molecule
- heavy metals
- mesenchymal stem cells
- young adults
- high efficiency
- case report
- liquid chromatography
- cell therapy
- recombinant human