Login / Signup

Iridium(III) Complexes Bearing Tridentate Chromophoric Chelate: Phosphorescence Fine-Tuned by Phosphine and Hydride Ancillary.

Jia-Ling LiaoPalanisamy RajakannuShih-Hung LiuGene-Hsiang LeePi-Tai ChouAlex K-Y- JenYun Chi
Published in: Inorganic chemistry (2018)
Functional 2-pyrazolyl-6-phenylpyridine chelates-namely, (pzpyphBu)H2 and (pzpyphCF3)H2 and phosphines-are successfully employed in the preparation of emissive Ir(III) metal complexes, for which the reaction with phosphine such as PPh3, PPh2Me, and PPh2(CH2Ph) afford corresponding Ir(III) complexes [Ir(pzpyphBu)(PPh3)2H] (1a), [Ir(pzpyphCF3)(PPh2R)2H] (2a-2c), R = Ph, Me, CH2Ph, which also show an equatorial coordinated hydride. In contrast, treatment with 1,2-bis(diphenylphosphino)benzene (dppb) and 1,2-bis(diphenylphosphino)ethane (dppe) yields the isomeric products [Ir(pzpyphBu)(dppb)H] (3a) and [Ir(pzpyphBu)(dppe)H] (3b), for which the distinctive, axial hydride undergoes rapid chlorination, forming chlorinated complexes [Ir(pzpyphBu)(dppb)Cl] (4a) and [Ir(pzpyphBu)(dppe)Cl] (4b), respectively. On the other hand, upon extensive heating of 2c, one of its coordinated PPh2(CH2Ph) exhibits benzyl cyclometalation and hydride elimination to afford [Ir(pzpyphCF3)(PPh2R)(PPh2R')] (5c and 6c) R = CH2Ph and R' = CH2( o-C6H4) as the kinetic and thermodynamic products, respectively. Their structural, photophysical, and electrochemical properties are examined and further affirmed by the computational approaches.
Keyphrases
  • room temperature
  • gold nanoparticles
  • computed tomography
  • air pollution
  • high resolution
  • contrast enhanced
  • combination therapy
  • sensitive detection
  • tandem mass spectrometry
  • solid phase extraction