Zeolitic Imidazolate Framework Platform for Combinational Starvation Therapy and Oxygen Self-Sufficient Photodynamic Therapy against a Hypoxia Tumor.
Yingjie OuyangPeng WangBaoxuan HuangGuoliang YangJia TianHongman ZhangPublished in: ACS applied bio materials (2021)
The antitumor efficacy of photodynamic therapy (PDT) is greatly impeded by the nonspecific targeting of photosensitizers and limited oxygen supply in hypoxic tumors. Aiming to overcome the problem, a dual-locked porphyrin/enzyme-loading zeolitic imidazolate framework (ZIF) nanoplatform was constructed for starvation therapy and O 2 self-sufficient PDT. The fluorescence recovery and PDT of photosensitizers could be cooperatively triggered by dual pathological parameters, the low pH and overexpressed GSH in tumor tissues, which makes the PDT process conduct precisely in a tumor microenvironment. The cascade catalysis of glucose oxidase and catalase promotes the nanoplatform dissociation, inhibits the energy supply of tumors (starvation therapy), and provides enough O 2 to ameliorate the hypoxia and enhance PDT efficacy. In vitro and in vivo studies were performed to confirm the high antitumor efficacy of the porphyrin/enzyme-loading ZIF nanoplatform. Thus, this work offers a path for precise and efficient PDT-based combination therapy against a hypoxia tumor.