Nonlinear Optical and Ion Sensor Properties of Novel Molecules Conjugated by Click Chemistry.
Zongcheng MiaoYaqin ChuLei WangWenqing ZhuDong WangPublished in: Polymers (2022)
The molecular structure, luminescence behavior, and electronic energy level of an organic optoelectronic materials are important parameters for its synthesis. The electro-optical properties can be changed by modifying the structure of the molecule to make the electronic energy level adjustable. In this article, a series of organic conjugated micro-molecules are successfully synthesized by linking small compound units. This metal-free [2 + 2] click chemistry process generates donor-acceptor chromophore substances with high yield, high solubility, and adjustable energy levels, which can be widely used for sensors and nonlinear optics in different fields. A-TCNE, A-TCNQ, and A-F4-TCNQ molecules are characterized comprehensively via UV-Vis-NIR spectra, 1 H NMR spectra, infrared spectroscopy, and mass spectrometry. The unique nonlinear optical phenomena and powerful intra-molecular charge-transfer interactions of these new materials give them fascinating potential for application as optoelectronic materials.