Login / Signup

The Commensal Microbiota Enhances ADP-Triggered Integrin αIIbβ3 Activation and von Willebrand Factor-Mediated Platelet Deposition to Type I Collagen.

Klytaimnistra KiouptsiSven JäckelEivor WilmsGiulia PontarolloJana WintersteinCornelia KarwotKathrin GroßKerstin JurkChristian Reinhardt
Published in: International journal of molecular sciences (2020)
The commensal microbiota is a recognized enhancer of arterial thrombus growth. While several studies have demonstrated the prothrombotic role of the gut microbiota, the molecular mechanisms promoting arterial thrombus growth are still under debate. Here, we demonstrate that germ-free (GF) mice, which from birth lack colonization with a gut microbiota, show diminished static deposition of washed platelets to type I collagen compared with their conventionally raised (CONV-R) counterparts. Flow cytometry experiments revealed that platelets from GF mice show diminished activation of the integrin αIIbβ3 (glycoprotein IIbIIIa) when activated by the platelet agonist adenosine diphosphate (ADP). Furthermore, washed platelets from Toll-like receptor-2 (Tlr2)-deficient mice likewise showed impaired static deposition to the subendothelial matrix component type I collagen compared with wild-type (WT) controls, a process that was unaffected by GPIbα-blockade but influenced by von Willebrand factor (VWF) plasma levels. Collectively, our results indicate that microbiota-triggered steady-state activation of innate immune pathways via TLR2 enhances platelet deposition to subendothelial matrix molecules. Our results link host colonization status with the ADP-triggered activation of integrin αIIbβ3, a pathway promoting platelet deposition to the growing thrombus.
Keyphrases
  • toll like receptor
  • wild type
  • inflammatory response
  • nuclear factor
  • flow cytometry
  • immune response
  • innate immune
  • high fat diet induced
  • transcription factor
  • adipose tissue
  • tissue engineering
  • skeletal muscle