Login / Signup

The role of the SWI/SNF chromatin remodeling complex in maintaining the stemness of glioma initiating cells.

Hiroaki HiramatsuKazuyoshi KobayashiKyousuke KobayashiTakeshi HaraguchiYasushi InoTomoki TodoHideo Iba
Published in: Scientific reports (2017)
Glioma initiating cells (GICs) are thought to contribute to therapeutic resistance and tumor recurrence in glioblastoma, a lethal primary brain tumor in adults. Although the stem-like properties of GICs, such as self-renewal and tumorigenicity, are epigenetically regulated, the role of a major chromatin remodeling complex in human, the SWI/SNF complex, remains unknown in these cells. We here demonstrate that the SWI/SNF core complex, that is associated with a unique corepressor complex through the d4-family proteins, DPF1 or DPF3a, plays essential roles in stemness maintenance in GICs. The serum-induced differentiation of GICs downregulated the endogenous expression of DPF1 and DPF3a, and the shRNA-mediated knockdown of each gene reduced both sphere-forming ability and tumor-forming activity in a mouse xenograft model. Rescue experiments revealed that DPF1 has dominant effects over DPF3a. Notably, whereas we have previously reported that d4-family members can function as adaptor proteins between the SWI/SNF complex and NF-κB dimers, this does not significantly contribute to maintaining the stemness properties of GICs. Instead, these proteins were found to link a corepressor complex containing the nuclear receptor, TLX, and LSD1/RCOR2 with the SWI/SNF core complex. Collectively, our results indicate that DPF1 and DPF3a are potential therapeutic targets for glioblastoma.
Keyphrases