Emergence of belief-like representations through reinforcement learning.
Jay A HennigSandra A Romero PintoTakahiro YamaguchiScott W LindermanNaoshige UchidaSamuel J GershmanPublished in: bioRxiv : the preprint server for biology (2023)
Natural environments are full of uncertainty. For example, just because my fridge had food in it yesterday does not mean it will have food today. Despite such uncertainty, animals can estimate which states and actions are the most valuable. Previous work suggests that animals estimate value using a brain area called the basal ganglia, using a process resembling a reinforcement learning algorithm called TD learning. However, traditional reinforcement learning algorithms cannot accurately estimate value in environments with state uncertainty (e.g., when my fridge's contents are unknown). One way around this problem is if agents form "beliefs," a probabilistic estimate of how likely each state is, given any observations so far. However, estimating beliefs is a demanding process that may not be possible for animals in more complex environments. Here we show that an artificial recurrent neural network (RNN) trained with TD learning can estimate value from observations, without explicitly estimating beliefs. The trained RNN's error signals resembled the neural activity of dopamine neurons measured during the same task. Importantly, the RNN's activity resembled beliefs, but only when the RNN had enough capacity. This work illustrates how animals could estimate value in uncertain environments without needing to first form beliefs, which may be useful in environments where computing the true beliefs is too costly.