Yeast require redox switching in DNA primase.
Elizabeth O'BrienLauren E SalayEsther A EpumKatherine L FriedmanWalter J ChazinJacqueline K BartonPublished in: Proceedings of the National Academy of Sciences of the United States of America (2018)
Eukaryotic DNA primases contain a [4Fe4S] cluster in the C-terminal domain of the p58 subunit (p58C) that affects substrate affinity but is not required for catalysis. We show that, in yeast primase, the cluster serves as a DNA-mediated redox switch governing DNA binding, just as in human primase. Despite a different structural arrangement of tyrosines to facilitate electron transfer between the DNA substrate and [4Fe4S] cluster, in yeast, mutation of tyrosines Y395 and Y397 alters the same electron transfer chemistry and redox switch. Mutation of conserved tyrosine 395 diminishes the extent of p58C participation in normal redox-switching reactions, whereas mutation of conserved tyrosine 397 causes oxidative cluster degradation to the [3Fe4S]+ species during p58C redox signaling. Switching between oxidized and reduced states in the presence of the Y397 mutations thus puts primase [4Fe4S] cluster integrity and function at risk. Consistent with these observations, we find that yeast tolerate mutations to Y395 in p58C, but the single-residue mutation Y397L in p58C is lethal. Our data thus show that a constellation of tyrosines for protein-DNA electron transfer mediates the redox switch in eukaryotic primases and is required for primase function in vivo.
Keyphrases
- electron transfer
- circulating tumor
- cell free
- dna binding
- single molecule
- transcription factor
- saccharomyces cerevisiae
- endothelial cells
- metal organic framework
- amino acid
- physical activity
- nucleic acid
- circulating tumor cells
- machine learning
- cell wall
- aqueous solution
- artificial intelligence
- binding protein
- protein protein
- electronic health record
- genetic diversity
- data analysis