In Situ Synthesized Selenium Nanoparticles-Decorated Bacterial Cellulose/Gelatin Hydrogel with Enhanced Antibacterial, Antioxidant, and Anti-Inflammatory Capabilities for Facilitating Skin Wound Healing.
Lin MaoLi WangMingyue ZhangMuhammad Wajid UllahLi LiuWeiwei ZhaoYing LiAbeer Ahmed Qaed AhmedHaoyan ChengZhijun ShiGuang YangPublished in: Advanced healthcare materials (2021)
Bacterial-associated wound infection and antibiotic resistance have posed a major burden on patients and health care systems. Thus, developing a novel multifunctional antibiotic-free wound dressing that cannot only effectively prevent wound infection, but also facilitate wound healing is urgently desired. Herein, a series of multifunctional nanocomposite hydrogels with remarkable antibacterial, antioxidant, and anti-inflammatory capabilities, based on bacterial cellulose (BC), gelatin (Gel), and selenium nanoparticles (SeNPs), are constructed for wound healing application. The BC/Gel/SeNPs nanocomposite hydrogels exhibit excellent mechanical properties, good swelling ability, flexibility and biodegradability, and favorable biocompatibility, as well as slow and sustainable release profiles of SeNPs. The decoration of SeNPs endows the hydrogels with superior antioxidant and anti-inflammatory capability, and outstanding antibacterial activity against both common bacteria (E. coli and S. aureus) and their multidrug-resistant counterparts. Furthermore, the BC/Gel/SeNPs hydrogels show an excellent skin wound healing performance in a rat full-thickness defect model, as evidenced by the significantly reduced inflammation, and the notably enhanced wound closure, granulation tissue formation, collagen deposition, angiogenesis, and fibroblast activation and differentiation. This study suggests that the developed multifunctional BC/Gel/SeNPs nanocomposite hydrogel holds a great promise as a wound dressing for preventing wound infection and accelerating skin regeneration in clinic.
Keyphrases
- wound healing
- anti inflammatory
- oxidative stress
- drug delivery
- reduced graphene oxide
- multidrug resistant
- healthcare
- hyaluronic acid
- quantum dots
- end stage renal disease
- tissue engineering
- cancer therapy
- silver nanoparticles
- newly diagnosed
- aqueous solution
- ionic liquid
- escherichia coli
- prognostic factors
- primary care
- ejection fraction
- peritoneal dialysis
- chronic kidney disease
- stem cells
- gold nanoparticles
- metal organic framework
- acinetobacter baumannii
- high resolution
- deep learning
- cystic fibrosis
- soft tissue