Artificial intelligence applications for immunology laboratory: image analysis and classification study of IIF photos.
Mehmet Akif DurmuşSelda KömeçAbdurrahman GülmezPublished in: Immunologic research (2024)
Artificial intelligence (AI) is increasingly being used in medicine to enhance the speed and accuracy of disease diagnosis and treatment. AI-based image analysis is expected to play a crucial role in future healthcare facilities and laboratories, offering improved precision and cost-effectiveness. As technology advances, the requirement for specialized software knowledge to utilize AI applications is diminishing. Our study will examine the advantages and challenges of employing AI-based image analysis in the field of immunology and will investigate whether physicians without software expertise can use MS Azure Portal for ANA IIF test classification and image analysis. This is the first study to perform Hep-2 image analysis using MS Azure Portal. We will also assess the potential for AI applications to aid physicians in interpreting ANA IIF results in immunology laboratories. The study was designed in four stages by two specialists. Stage 1: creation of an image library, Stage 2: finding an artificial intelligence application, Stage 3: uploading images and training artificial intelligence, Stage 4: performance analysis of the artificial intelligence application. In the first training, the average pattern identification accuracy for 72 testing images was 81.94%. After the second training, this accuracy increased to 87.5%. Patterns Precision improved from 71.42 to 79.96% after the second training. As a result, the number of correctly identified patterns and their accuracy increased with the second training process. Artificial intelligence-based image analysis shows promising potential. This technology is expected to become essential in healthcare facility laboratories, offering higher accuracy rates and lower costs.