Login / Signup

P-Type ZnO Films Made by Atomic Layer Deposition and Ion Implantation.

Guoxiu ZhangLars RebohleFabian GanssWojciech DawidowskiElżbieta GuziewiczJung-Hyuk KohManfred HelmShengqiang ZhouYufei LiuSlawomir Prucnal
Published in: Nanomaterials (Basel, Switzerland) (2024)
Zinc oxide (ZnO) is a wide bandgap semiconductor that holds significant potential for various applications. However, most of the native point defects in ZnO like Zn interstitials typically cause an n-type conductivity. Consequently, achieving p-type doping in ZnO is challenging but crucial for comprehensive applications in the field of optoelectronics. In this work, we investigated the electrical and optical properties of ex situ doped p-type ZnO films. The p-type conductivity has been realized by ion implantation of group V elements followed by rapid thermal annealing (RTA) for 60 s or flash lamp annealing (FLA) on the millisecond time scale in nitrogen or oxygen ambience. The phosphorus (P)-doped ZnO films exhibit stable p-type doping with a hole concentration in the range of 10 14 to 10 18 cm -3 , while antimony (Sb) implantation produces only n-type layers independently of the annealing procedure. Microstructural studies of Sb-doped ZnO show the formation of metallic clusters after ms range annealing and SbZn-oxides after RTA.
Keyphrases
  • room temperature
  • quantum dots
  • visible light
  • reduced graphene oxide
  • multiple sclerosis
  • minimally invasive
  • ionic liquid
  • heavy metals
  • climate change
  • sewage sludge
  • amino acid