Recycling Organic Dyes within the Metal-Organic Framework for Photothermal Conversion.
Xiao-Dong YangHaijing LvWenjing DongYaping WenMiaomiao FuQiqi ZhangLian ZhouXiaopeng XuanPublished in: Inorganic chemistry (2024)
The pursuit of a straightforward method to recycle organic dyes from effluents and repurpose them into valuable materials represents a highly sought-after yet huge challenge within the realms of chemistry, environment, and materials science. In this context, we employ a host-guest strategy that leverages the recycling of the rhodamine B molecule within the porous structure of a metal-organic framework to facilitate photothermal conversion. This achievement is realized through the electrostatic interaction, which then gives rise to remarkable selectivity and unparalleled uptake capacity for the cationic rhodamine B molecule. Capitalizing on this approach, the application of a columnar device and membrane technology for efficiently trapping rhodamine B molecules becomes feasible. On account of the aggregation effect resulting from the confined pore structure of the host matrix, the fluorescence emission of the encapsulated RhB molecules is significantly reduced, which consequently enhances the photothermal performance of the hybrid material through nonradiative transition. Moreover, the photothermal conversion achieved showcases a myriad of high-performance applications, including bacterial inhibition against Escherichia coli and seawater desalination.