Extraction of Land Information, Future Landscape Changes and Seismic Hazard Assessment: A Case Study of Tabriz, Iran.
Ayub MohammadiSadra KarimzadehKhalil Valizadeh KamranMasashi MatsuokaPublished in: Sensors (Basel, Switzerland) (2020)
Exact land cover inventory data should be extracted for future landscape prediction and seismic hazard assessment. This paper presents a comprehensive study towards the sustainable development of Tabriz City (NW Iran) including land cover change detection, future potential landscape, seismic hazard assessment and municipal performance evaluation. Landsat data using maximum likelihood (ML) and Markov chain algorithms were used to evaluate changes in land cover in the study area. The urbanization pattern taking place in the city was also studied via synthetic aperture radar (SAR) data of Sentinel-1 ground range detected (GRD) and single look complex (SLC). The age of buildings was extracted by using built-up areas of all classified maps. The logistic regression (LR) model was used for creating a seismic hazard assessment map. From the results, it can be concluded that the land cover (especially built-up areas) has seen considerable changes from 1989 to 2020. The overall accuracy (OA) values of the produced maps for the years 1989, 2005, 2011 and 2020 are 96%, 96%, 93% and 94%, respectively. The future potential landscape of the city showed that the land cover prediction by using the Markov chain model provided a promising finding. Four images of 1989, 2005, 2011 and 2020, were employed for built-up areas' land information trends, from which it was indicated that most of the built-up areas had been constructed before 2011. The seismic hazard assessment map indicated that municipal zones of 1 and 9 were the least susceptible areas to an earthquake; conversely, municipal zones of 4, 6, 7 and 8 were located in the most susceptible regions to an earthquake in the future. More findings showed that municipal zones 1 and 4 demonstrated the best and worst performance among all zones, respectively.