Login / Signup

Artificial Intelligence-assisted quantification of COVID-19 pneumonia burden from computed tomography improves prediction of adverse outcomes over visual scoring systems.

Kajetan GrodeckiAditya KillekarJudit SimonAndrew LinSebastien CadetPriscilla McElhinneyCato ChanMichelle C WilliamsBarry D PressmanPeter JulienDebiao LiPeter ChenNicola GaibazziUdit ThakurElisabetta ManciniCecilia AgalbatoJiro MunechikaHidenari MatsumotoRoberto MeneGianfranco ParatiFranco CernigliaroNitesh NerlekarCamilla TorlascoGianluca PontonePal Maurovich-HorvatPiotr J SlomkaDamini Dey
Published in: The British journal of radiology (2023)
Quantitative pneumonia burden assessed using AI demonstrated higher performance for predicting clinical deterioration compared to current semi-quantitative scoring systems. Such an AI system has the potential to be applied for image-based triage of COVID-19 patients in clinical practice.
Keyphrases