Login / Signup

Crystallization of the β-Form of Polypropylene from the Melt with Reduced Entanglement of Macromolecules.

Justyna KrajentaAndrzej Pawlak
Published in: Polymers (2024)
The influence of decreasing the entanglement density of macromolecules on the crystallization of the β-form of polypropylene was investigated. Polypropylene with seven times less entanglement was obtained from a solution in xylene, and its properties were compared with those of fully entangled polypropylene. To obtain a high β-phase content, the polymer was nucleated using calcium pimelate. In non-isothermal crystallization studies, accelerated growth of β-crystals was found, increasing the crystallization temperature. Also, the isothermal crystallization was fastest in the nucleated, partially disentangled polypropylene. Increased growth rate of spherulites and enhanced nucleation activity in the presence of more mobile macromolecules were responsible for the high rate of melt conversion to crystals in the disentangled polypropylene. It was also observed that the equilibrium melting temperature of β-crystals is lower after disentangling macromolecules. Better conditions for crystal building after reduction of entanglements resulted in enhanced crystallization according to regime II.
Keyphrases
  • room temperature
  • high resolution
  • molecular dynamics simulations
  • mass spectrometry