Login / Signup

Syllable as a unit of information transfer in linguistic communication: The entropy syllable parsing model.

Evie A MalaiaRonnie B Wilbur
Published in: Wiley interdisciplinary reviews. Cognitive science (2019)
To understand human language-both spoken and signed-the listener or viewer has to parse the continuous external signal into components. The question of what those components are (e.g., phrases, words, sounds, phonemes?) has been a subject of long-standing debate. We re-frame this question to ask: What properties of the incoming visual or auditory signal are indispensable to eliciting language comprehension? In this review, we assess the phenomenon of language parsing from modality-independent viewpoint. We show that the interplay between dynamic changes in the entropy of the signal and between neural entrainment to the signal at syllable level (4-5 Hz range) is causally related to language comprehension in both speech and sign language. This modality-independent Entropy Syllable Parsing model for the linguistic signal offers insight into the mechanisms of language processing, suggesting common neurocomputational bases for syllables in speech and sign language. This article is categorized under: Linguistics > Linguistic Theory Linguistics > Language in Mind and Brain Linguistics > Computational Models of Language Psychology > Language.
Keyphrases
  • autism spectrum disorder
  • endothelial cells
  • social media
  • brain injury
  • white matter
  • resting state