Login / Signup

The Ionic Product of Water in the Eye of the Quantum Cluster Equilibrium.

Barbara KirchnerJohannes IngenmeyMichael von DomarosEva Perlt
Published in: Molecules (Basel, Switzerland) (2022)
The theoretical description of water properties continues to be a challenge. Using quantum cluster equilibrium (QCE) theory, we combine state-of-the-art quantum chemistry and statistical thermodynamic methods with the almost historical Clausius-Clapeyron relation to study water self-dissociation and the thermodynamics of vaporization. We pay particular attention to the treatment of internal rotations and their impact on the investigated properties by employing the modified rigid-rotor-harmonic-oscillator (mRRHO) approach. We also study a novel QCE parameter-optimization procedure. Both the ionic product and the vaporization enthalpy yield an astonishing agreement with experimental reference data. A significant influence of the mRRHO approach is observed for cluster populations and, consequently, for the ionic product. Thermodynamic properties are less affected by the treatment of these low-frequency modes.
Keyphrases
  • molecular dynamics
  • molecular dynamics simulations
  • machine learning
  • aqueous solution
  • working memory
  • health insurance
  • high resolution
  • artificial intelligence
  • smoking cessation