Login / Signup

Warming leads to more closed nitrogen cycling in nitrogen-rich tropical forests.

Zhiyang LieWenjuan HuangXujun LiuGuoyi ZhouJunhua YanYuelin LiChumin HuangTing WuXiong FangMengdi ZhaoShizhong LiuGuowei ChuKohmei KadowakiXiaoping PanJuxiu Liu
Published in: Global change biology (2020)
Warming may have profound effects on nitrogen (N) cycling by changing plant N demand and underground N supply. However, large uncertainty exists regarding how warming affects the integrated N dynamic in tropical forests. We translocated model plant-soil ecosystems from a high-altitude site (600 m) to low-altitude sites at 300 and 30 m to simulate warming by 1.0°C and 2.1°C, respectively, in tropical China. The effects of experimental warming on N components in plant, soil, leaching, and gas were studied over 6 years. Our results showed that foliar δ15 N values and inorganic N (NH4 -N and NO3 -N) leaching were decreased under warming, with greater decreases under 2.1°C of warming than under 1.0°C of warming. The 2.1°C of warming enhanced plant growth, plant N uptake, N resorption, and fine root biomass, suggesting higher plant N demand. Soil total N concentrations, NO3 -N concentrations, microbial biomass N and arbuscular mycorrhizal fungal abundance were decreased under 2.1°C of warming, which probably restricted bioavailable N supply and arbuscular mycorrhizal contribution of N supply to plants. These changes in plants, soils and leaching indicated more closed N cycling under warming, the magnitude of which varied over time. The closed N cycling became pronounced during the first 3 years of warming where the sustained reductions in soil inorganic N could not meet plant N demand. Subsequently, the closed N cycling gradually mitigated, as observed by attenuated positive responses of plant growth and less negative responses of microbial biomass N to warming during the last 3 years. Overall, the more closed N cycling under warming could facilitate ecosystem N retention and affect production in these tropical forests, but these effects would be eventually mitigated with long-term warming probably due to the restricted plant growth and microbial acclimation.
Keyphrases
  • plant growth
  • climate change
  • heavy metals
  • microbial community
  • wastewater treatment
  • air pollution
  • autism spectrum disorder
  • anaerobic digestion
  • amino acid
  • antibiotic resistance genes