Login / Signup

Charge Transition of Oxygen Vacancies during Resistive Switching in Oxide-Based RRAM.

Jihang LeeWilliam SchellXiaojian ZhuEmmanouil KioupakisWei D Lu
Published in: ACS applied materials & interfaces (2019)
Resistive random-access memory (RRAM) devices have attracted broad interest as promising building blocks for high-density nonvolatile memory and neuromorphic computing applications. Atomic level thermodynamic and kinetic descriptions of resistive switching (RS) processes are essential for continued device design and optimization but are relatively lacking for oxide-based RRAMs. It is generally accepted that RS occurs due to the redistribution of charged oxygen vacancies driven by an external electric field. However, this assumption contradicts the experimentally observed stable filaments, where the high vacancy concentration should lead to a strong Coulomb repulsion and filament instability. In this work, through predictive atomistic calculations in combination with experimental measurements, we attempt to understand the interactions between oxygen vacancies and the microscopic processes that are required for stable RS in a Ta2O5-based RRAM. We propose a model based on a series of charge transition processes that explains the drift and aggregation of vacancies during RS. The model was validated by experimental measurements where illuminated devices exhibit accelerated RS behaviors during SET and RESET. The activation energies of ion migration and charge transition were further experimentally determined through a transient current measurement, consistent with the modeling results. Our results help provide comprehensive understanding on the internal dynamics of RS and will benefit device optimization and applications.
Keyphrases
  • high density
  • molecular dynamics simulations
  • working memory
  • density functional theory
  • molecular dynamics
  • brain injury
  • aqueous solution