A Comprehensive Review of Nanofluid Heat Transfer in Porous Media.
Hossam A NabweyTaher ArmaghaniBehzad AzizimehrAhmed M RashadAli J ChamkhaPublished in: Nanomaterials (Basel, Switzerland) (2023)
In the present paper, recent advances in the application of nanofluids in heat transfer in porous materials are reviewed. Efforts have been made to take a positive step in this field by scrutinizing the top papers published between 2018 and 2020. For that purpose, the various analytical methods used to describe the flow and heat transfer in different types of porous media are first thoroughly reviewed. In addition, the various models used to model nanofluids are described in detail. After reviewing these analysis methods, papers concerned with the natural convection heat transfer of nanofluids in porous media are evaluated first, followed by papers on the subject of forced convection heat transfer. Finally, we discuss articles related to mixed convection. Statistical results from the reviewed research regarding the representation of various parameters, such as the nanofluid type and the flow domain geometry, are analyzed, and directions for future research are finally suggested. The results reveal some precious facts. For instance, a change in the height of the solid and porous medium results in a change in the flow regime within the chamber; as a dimensionless permeability, the effect of Darcy's number on heat transfer is direct; and the effect of the porosity coefficient has a direct relationship with heat transfer: when the porosity coefficient is increased or decreased, the heat transfer will also increase or decrease. Additionally, a comprehensive review of nanofluid heat transfer in porous media and the relevant statical analysis are presented for the first time. The results show that Al2O3 nanoparticles in a base fluid of water with a proportion of 33.9% have the highest representation in the papers. Regarding the geometries studied, a square geometry accounted for 54% of the studies.