Decreased functional connectivity is associated with increased levels of Cerebral Spinal Fluid soluble-PDGFRβ, a marker of blood brain barrier breakdown, in older adults.
Joey A ContrerasKimiko FujisakiNancy E OrtegaGiuseppe BarisanoAbhay P SagareIoannis PappasHelena ChuiJohn M RingmanElizabeth B JoeBerislav V ZlokovicArthur W TogaJudy PaPublished in: Brain imaging and behavior (2024)
Resting-state functional connectivity (FC) is suggested to be cross-sectionally associated with both vascular burden and Alzheimer's disease (AD) pathology. For instance, studies in pre-clinical AD subjects have shown increases of cerebral spinal fluid soluble platelet-derived growth factor receptor-β (CSF sPDGFRβ, a marker of BBB breakdown) but have not demonstrated if this vascular impairment affects neuronal dysfunction. It's possible that increased levels of sPDGFRβ in the CSF may correlate with impaired FC in metabolically demanding brain regions (i.e. Default Mode Network, DMN). Our study aimed to investigate the relationship between these two markers in older individuals that were cognitively normal and had cognitive impairment. Eighty-nine older adults without dementia from the University of Southern California were selected from a larger cohort. Region of interest (ROI) to ROI analyses were conducted using DMN seed regions. Linear regression models measured significant associations between BOLD FC strength among seed-target regions and sPDGFRβ values, while covarying for age and sex. Comparison of a composite ROI created by averaging FC values between seed and all target regions among cognitively normal and impaired individuals was also examined. Using CSF sPDGFRβ as a biomarker of BBB breakdown, we report that increased breakdown correlated with decreased functional connectivity in DMN areas, specifically the PCC, and while the hippocampus exhibited an interaction effect using CDR score, this was an exploratory analysis that we feel can lead to further research. Ultimately, we found that BBB breakdown, as measured by CSF sPDGFRβ, is associated with neural networks, and decreased functional connections.
Keyphrases
- resting state
- functional connectivity
- blood brain barrier
- cerebral ischemia
- cognitive impairment
- growth factor
- neural network
- mild cognitive impairment
- cognitive decline
- physical activity
- spinal cord
- subarachnoid hemorrhage
- oxidative stress
- cerebrospinal fluid
- brain injury
- multiple sclerosis
- binding protein
- spinal cord injury
- risk factors
- data analysis
- case control