Login / Signup

Distinct α- and β-band rhythms over rat somatosensory cortex with similar properties as in humans.

Anne M M FransenGeorge DimitriadisFreek van EdeEric Maris
Published in: Journal of neurophysiology (2016)
We demonstrate distinct α- (7-14 Hz) and β-band (15-30 Hz) rhythms in rat somatosensory cortex in vivo using epidural electrocorticography recordings. Moreover, we show in rats that a genuine β-rhythm coexists alongside β-activity that reflects the second harmonic of the arch-shaped somatosensory α-rhythm. This demonstration of a genuine somatosensory β-rhythm depends on a novel quantification of neuronal oscillations that is based on their rhythmic nature: lagged coherence. Using lagged coherence, we provide two lines of evidence that this somatosensory β-rhythm is distinct from the second harmonic of the arch-shaped α-rhythm. The first is based on the rhythms' spatial properties: the α- and β-rhythms are demonstrated to have significantly different topographies. The second is based on the rhythms' temporal properties: the lagged phase-phase coupling between the α- and β-rhythms is demonstrated to be significantly less than would be expected if both reflected a single underlying nonsinusoidal rhythm. Finally, we demonstrate that 1) the lagged coherence spectrum is consistent between signals from rat and human somatosensory cortex; and 2) a tactile stimulus has the same effect on the somatosensory α- and β-rhythms in both rats and humans, namely suppressing them. Thus we not only provide evidence for the existence of genuine α- and β-rhythms in rat somatosensory cortex, but also for their homology to the primate sensorimotor α- and β-rhythms.
Keyphrases
  • transcranial direct current stimulation
  • atrial fibrillation
  • heart rate
  • functional connectivity
  • oxidative stress
  • working memory
  • spinal cord injury
  • signaling pathway
  • brain injury
  • blood brain barrier