Ultrathin Metal Crystals: Growth on Supported Graphene Surfaces and Applications.
Soo Sang ChaeSeunghun JangWonki LeeDu Won JungKeun Ho LeeJung Dong KimDohyeon JeongHyunju ChangJun Yeon HwangJeong-O LeePublished in: Small (Weinheim an der Bergstrasse, Germany) (2018)
Controlled nucleation and growth of metal clusters in metal deposition processes is a long-standing issue for thin-film-based electronic devices. When metal atoms are deposited on solid surfaces, unintended defects sites always lead to a heterogeneous nucleation, resulting in a spatially nonuniform nucleation with irregular growth rates for individual nuclei, resulting in a rough film that requires a thicker film to be deposited to reach the percolation threshold. In the present study, it is shown that substrate-supported graphene promotes the lateral 2D growth of metal atoms on the graphene. Transmission electron microscopy reveals that 2D metallic single crystals are grown epitaxially on supported graphene surfaces while a pristine graphene layer hardly yields any metal nucleation. A surface energy barrier calculation based on density functional theory predicts a suppression of diffusion of metal atoms on electronically perturbed graphene (supported graphene). 2D single Au crystals grown on supported graphene surfaces exhibit unusual near-infrared plasmonic resonance, and the unique 2D growth of metal crystals and self-healing nature of graphene lead to the formation of ultrathin, semitransparent, and biodegradable metallic thin films that could be utilized in various biomedical applications.