Login / Signup

High co-infection rates of Babesia bovis, Babesia bigemina, and Anaplasma marginale in water buffalo in Western Cuba.

Dasiel Obregón AlvarezAlejandro Cabezas-CruzYasmani ArmasJenevaldo B SilvaAdivaldo H FonsecaMarcos R AndréPastor AlfonsoMárcia C S OliveiraRosangela Z MachadoBelkis Corona-González
Published in: Parasitology research (2019)
Water buffalo is important livestock in several countries in the Latin American and Caribbean regions. This buffalo species can be infected by tick-borne hemoparasites and remains a carrier of these pathogens which represent a risk of infection for more susceptible species like cattle. Therefore, studies on the epidemiology of tick-borne hemoparasites in buffaloes are required. In this study, the prevalence of Babesia bovis, Babesia bigemina, and Anaplasma marginale were determined in water buffalo herds of western Cuba. To this aim, a cross-sectional study covering farms with large buffalo populations in the region was performed. Eight buffalo herds were randomly selected, and blood samples were collected from 328 animals, including 63 calves (3-14 months), 75 young animals (3-5 years), and 190 adult animals (> 5 years). Species-specific nested PCR and indirect ELISA assays were used to determine the molecular and serological prevalences of each hemoparasite, respectively. The molecular and serological prevalence was greater than 50% for the three hemoparasites. Differences were found in infection prevalence among buffalo herds, suggesting that local epidemiological factors may influence infection risk. Animals of all age groups were infected, with a higher molecular prevalence of B. bigemina and A. marginale in young buffalo and calves, respectively, while a stepwise increase in seroprevalence of B. bovis and B. bigemina from calves to adult buffaloes was found. The co-infection by the three pathogens was found in 12% of animals, and when analyzed by pair, the co-infections of B. bovis and B. bigemina, B. bigemina and A. marginale, and B. bovis and A. marginale were found in 20%, 24%, and 26%, respectively, underlying the positive interaction between these pathogens infecting buffaloes. These results provide evidence that tick-borne pathogen infections can be widespread among water buffalo populations in tropical livestock ecosystems. Further studies should evaluate whether these pathogens affect the health status and productive performance of water buffalo and infection risk of these pathogens in cattle cohabiting with buffalo.
Keyphrases
  • risk factors
  • gram negative
  • antimicrobial resistance
  • climate change
  • south africa
  • genetic diversity
  • young adults
  • middle aged
  • single molecule
  • high throughput
  • single cell
  • candida albicans