Reliability of Poisson-Nernst-Planck Anomalous Models for Impedance Spectroscopy.
E K LenziLuiz R EvangelistaL TaghizadehD PasterkRafael S ZolaT SandevC HeitzingerI PetreskaPublished in: The journal of physical chemistry. B (2019)
We investigate possible connections between two different implementations of the Poisson-Nernst-Planck (PNP) anomalous models used to analyze the electrical response of electrolytic cells. One of them is built in the framework of the fractional calculus and considers integro-differential boundary conditions also formulated by using fractional derivatives; the other one is an extension of the standard PNP model presented by Barsoukov and Macdonald, which can also be related to equivalent circuits containing constant phase elements (CPEs). Both extensions may be related to an anomalous diffusion with subdiffusive characteristics through the electrical conductivity and are able to describe the experimental data presented here. Furthermore, we apply the Bayesian inversion method to extract the parameter of interest in the analytical formulas of impedance. To resolve the corresponding inverse problem, we use the delayed-rejection adaptive-Metropolis algorithm (DRAM) in the context of Markov-chain Monte Carlo (MCMC) algorithms to find the posterior distributions of the parameter and the corresponding confidence intervals.