Login / Signup

Strain-Inhibited Electromigration of Oxygen Vacancies in LaCoO3.

Liang ZhuShulin ChenHui ZhangJine ZhangYuanwei SunXiaomin LiZhi XuLifen WangJirong SunPeng GaoWenlong WangXuedong Bai
Published in: ACS applied materials & interfaces (2019)
The oxygen vacancy profile in LaCoO3 exhibits rich phases with distinct structures, symmetries, and magnetic properties. Exploration of the lattice degree of freedom of LaCoO3 in the transition between these different structural phases may provide a route to enable new functionality in oxide materials with potential applications. To date, the oxygen vacancy profile transition in LaCoO3 has mainly been induced by transition-metal doping or thermal treatment. Epitaxial strain was proposed to compete with the lattice degree of freedom but has not yet been rationalized. Here, the experimental findings of strain-inhibited structural transition from perovskite to brownmillerite during the electromigration of oxygen vacancies in epitaxial LaCoO3 thin films are demonstrated. The results indicate that the oxygen vacancy ordering phase induced by the electric field is suppressed locally by both epitaxial strain field and external loads shown by in situ aberration-corrected (scanning)/ transmission electron microscopy. The demonstrated complex interplay between the electric and strain fields in the structural transitions of LaCoO3 opens up prospects for manipulating new physical properties by external excitations and/or strain engineering of a substrate.
Keyphrases
  • electron microscopy
  • transition metal
  • physical activity
  • mass spectrometry
  • current status
  • room temperature
  • molecularly imprinted
  • smoking cessation
  • liquid chromatography